Conversion of 2(*3H*)-Furanones into 1,3,4-Oxadiazoles

Abdel-Sattar S. Hamad Elgazwy,¹ Mayssoune Y. Zaki,² Nahed N. Eid,² and Ahmed I. Hashem¹

¹Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt

²Research Center for Drugs Control, Dokki, Giza, Egypt

Received 4 April 2003; revised 12 May 2003

ABSTRACT: A series of 2-phenyl-5-alkenyl-1,3,4oxadiazoles were synthesized in high yields from the corresponding dicarbonylhydrazides through cyclodehydration. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:570–574, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10197

INTRODUCTION

2-Aryl-5-alkenyl-1,3,4-oxadiazoles have been reported to show antibacterial [1,2], antifungal [3], analgesic, antiinflammatory [4,5], and hypoglycemic [2] activity. The most popular synthesis of 2,5-disubstituted-1,3,4-oxadiazoles is based on the thermal or acid-catalyzed cyclization of 1,2-diacylhydrazines [6]. Ring closure usually proceeds in the presence of hot phosphorus, using phosphorus oxychloride [2,3,7–10], although an improved method by triphenylphosphine/carbon tetrachloride/triethylamine reagent has also been reported [1]. These results promoted us to convert 2(3H)-furanones **1a–f** into 1,3,4-oxadiazoles **4a–f**. In this paper we report selected results of our investigations.

RESULTS AND DISCUSSION

In a previous study, we reported [11,12] the synthesis of 5-aryl-3-arylmethylene-2-(3H)-furanones 1a-f via the condensation reactions of furan-2carboxaldehyde or 4-dimethylaminobenzaldehyde with 3-aroylpropionic acids under Perkin conditions, which yielded the corresponding *E*-lactones as the only product and with no detectable amount of the Z-isomers [7]. This result was consistent with the results reported by Awad et al. [13] and others [14,15] concerning the condensation reaction of 5-methyl-furan-2-carboxaldehyde or 5-methyl thiophene-2-carboxaldehyde with 3-aroylpropionic acids under Perkin conditions. Scheme 1 shows the conversion of **1a-f** into (*E*)-2-aroylmethyl-3-arylacrylohydrazides **2a–f**, N^{1} -(*E*)-2-aroylmethyl-3-aryl- N^2 -benzo-acrylohydrazides **3a-f**, 2-phenyl-5-[(*E*)-1aroylmethyl-2-(2-furyl)vinyl]-1,3,4-oxadiazoles **4a-c**, and 2-phenyl-5-[(E)-1-aroylmethyl-2-(4-dimethylaminophenyl)vinyl]-1,3,4-oxadiazoles 4d-f. Reaction of 2a-c with benzoyl chloride in dry benzene at refluxing temperature afforded **3a-c** in moderate (52-69%) yield, but the reaction of 2d-f with benzovl chloride under the same reaction conditions afforded **3d-f** in low (31-42%) vield.

Treatment of hydrazides **3a–f** with phosphorus oxychloride under reflux furnished **4a–f** in 22–70% yield. The structures of **3a–f** and **4a–f** were determined by spectroscopic methods and analyses. The IR spectral data for compounds **4a–c** are in agreement with our previous data [10].

Correspondence to: Abdel-Sattar S. Hamad Elgazwy, Group de Quimica Organometalica, Departamento de Quimica Inorganica, Facultad de Quimica, Universidad de Murcia, Aptdo. 4021. E-30071 Murcia, Spain; e-mail: abhamad@um.es.

Contract grant sponsor: Research Center of Drug Control in Egypt.

^{© 2003} Wiley Periodicals, Inc.

	λ _{max} (nm)	Abso.		λ _{max} (nm)	Abso.
1a	404.00	2.340	3a	415.00	0.448
	266.00	0.739		341.50	0.383
1b	407.50	1.313		270.00	0.363
	271.00	0.412		227.50	0.081
1c	407.50	0.943	3b	417.50	0.244
	311.50	0.053		334.00	0.239
	275.50	0.276		268.00	0.671
	224.50	0.075	3c	417.50	0.210
1d	461.00	1.423		340.50	0.181
	320.00	0.208		270.50	0.504
	272.00	0.176	3d	455.00	0.921
	218.00	0.098		321.50	0.066
1e	460.50	1.652		271.00	0.362
	320.50	0.252		232.00	-0.093
	305.50	0.264	3e	743.00	0.015
	271.00	0.351		455.00	0.755
	212.50	0.168		324.50	0.094
1f	468.50	0.701		273.50	0.363
	324.00	0.327	3f	460.50	0.701
	273.00	1.997		273.50	0.327
2a	306.00	0.734		221.50	1.997
2b	306.50	0.778	4a	269.50	0.276
	211.00	0.023	4b	471.00	0.049
2c	306.50	0.840		276.00	0.349
2d	468.50	0.022	4c	466.00	0.067
	353.50	1.044		287.50	0.240
2e	354.00	0.925	4d	269.50	0.725
	272.00	0.056		214.00	2.006
2f	473.50	0.003	4e	270.00	0.743
	354.50	0.778	4f	219.50	1.937

TABLE 1 Optical Properties of 1-4

Solvent dichloromethane, $c = 5 \times 10^{-6}$ mol/l for absorption measurements, $c = 1 \times 10^{-6}$ mol/l for emission measurements.

Optical Characterization

The absorption spectra of **1a–f** to **4a–f** were measured in CH_2Cl_2 at a concentration of 5×10^{-6} mol/l.

IABLE 2 Melting Point, Yield, and Elemental Analysis for 1-	eld, and Elemental Analysis for 1-4
--	-------------------------------------

SCHEME 1 Reagents and conditions: (i) NH_2NH_2 . H_2O /ethanol, stirring at RT for 2 days: (ii) benzoyl chloride in dry benzene heat/3 h: (iii) heating with POCl₃ for 1 h.

The results obtained are valid for dichloromethane as solvent and we did not find significant altered trends in other solvents. With a view to understand the coplanarity and rotational freedom of individual rings, nonstructured $\pi - \pi^*$ transition bands have been studied. Compared to parent lactones 1a-c at absorption maximum $\lambda_{max} = 404$ nm and 1d--f at $\lambda_{max} = 461$ nm, as outlined in Table 1, the replacement of 2-furyl by 4-dimethylaminophenyl rings, as realized for **1a-c/1d-f**, led to a bathochromic shift at the absorption maximum $\Delta \lambda_{max} = +53-61$ nm. However, either acrylohydrazides 2a-c or 2d-f caused an opposite hypsochromic shift at absorption maximum $\Delta \lambda_{max} = -98$ nm and $\Delta \lambda_{max} = -7$ nm, compared to parent lactones 1a-c and 1d-f respectively. Hydrazides **3a-c** caused a bathochromic shift at the absorption maximum $\Delta\lambda_{max}=+10$ nm versus parent lactones 1a-c, but the hydrazides 3d-f gave unexpected data for the hypsochromic shift at

				Calcd/Found		
_	т.р. (°С)	Yield (%)	Formula	С	Н	Ν
1e	186–188	44.2	C ₂₀ H ₁₉ NO ₂	78.66/78.9	6.27/6.10	4.58/5.00
1f	204–206	52.7	C ₁₉ H ₁₆ CINO ₂	70.04/70.40	4.95/5.40	4.29/4.90
2d	158–160	77	C ₁₉ H ₂₁ N ₃ O ₂	70.56/69.90	6.54/6.68	12.99/13.00
2e	134–135	86.7	$C_{19}H_{21}N_3O_2$	71.19/71.00	6.87/6.20	12.45/12.46
2f	126–128	79	C ₁₉ H ₂₀ CIN ₃ O ₂	63.77/63.70	5.63/5.90	11.74/11.70
3a	167–168	69.4	$C_{22}H_{18}N_2O_4$	70.57/70.10	4.84/4.80	7.84/7.78
3b	170–171	52.6	$C_{23}H_{20}N_2O_4$	71.12/71.00	5.18/5.70	7.21/7.30
3c	253–254	57.1	C ₂₂ H ₁₇ CIN ₂ O ₄	64.63/64.60	4.19/4.20	6.85/6.71
3d	234–236	31	C ₂₆ H ₂₅ N ₃ O ₃	73.04/73.04	5.98/6.5	9.82/9.78
3e	247–249	42.3	C ₂₇ H ₂₇ N ₃ O ₃	73.44/73.8	6.16/6.51	9.51/9.33
3f	266–268	57	C ₂₆ H ₂₄ ClN ₃ O ₃	67.60/70.00	5.23/5.4	9.09/9.00
4a	83–86	58	$C_{22}H_{16}N_2O_3$	74.14/74.16	4.52/4.60	7.86/7.58
4b	87–90	22	C ₂₃ H ₁₈ N ₂ O ₃	74.58/74.18	4.89/4.43	7.56/7.28
4c	>360	77	$C_{22}H_{15}CIN_2O_3$	67.61/67.50	3.86/3.70	7.16/7.12
4d	>360	26.6	C ₂₆ H ₂₃ N ₃ O ₂	76.26/76.14	5.66/5.60	10.26/10.10
4e	>360	14	C ₂₇ H ₂₅ N ₃ O ₂	76.57/76.34	5.94/5.80	9.92/9.80
4f	>360	65	C ₂₆ H ₂₂ CIN ₃ O ₂	70.34/70.30	4.99/5.16	9.46/9.40

TABLE 3 Infrared (Nujol) (cm⁻¹) and ¹H NMR (Deuteriodimethyl Sulfoxide) Spectral Data for 1–4

	υ <i>C=</i> 0, υ <i>C</i> =N, υ-NH	$\delta^{-1}H$
1e	1783	2.21 (s, 3H, Ar–C <u>H</u> ₃), 2.96 (s, 6H, –NC <u>H</u> ₃), 6.59 (s, 1H, –CH=C–), 6.69 (d, 2H, <i>J</i> = 8.8 Hz, Ar–H), 6.75 (s, 1H, –CH=C–), 7.15 (d, 2H, <i>J</i> = 9.05 Hz, Ar–H), 7.62 (d, 2H, <i>J</i> = 8.8 Hz, Ar–H), 7.70 (d, 2H, <i>J</i> = 8.3 Hz, Ar–H)
1f	1752	2.97 (s, 6H, $-NCH_3$), 6.61 (s, 1H, $-CH=C-$), 6.72 (d, 2H, $J = 8.8$ Hz, Ar–H), 7.17 (d, 2H, $J = 9.05$ Hz, Ar–H), 7.65 (d, 2H, $J = 8.8$ Hz, Ar–H), 7.71 (d, 2H, $J = 9.05$ Hz, Ar–H), 7.65 (d, 2H, $J = 8.8$ Hz, Ar–H), 7.71 (d, 2H, $J = 9.05$ Hz, Ar–H), 6.77 (s, 1H – CH–C–)
2d	1648, 1687, 3100–3300	2.84 (s, 6H, $-NCH_3$), 2.98 (d, 1H, $J = 2.4$ Hz, $-NHNH_2a$), 3.08 (d, 1H, $J = 2$ Hz, $-NHNH_2b$), 4.24 (s, 2H, $-CH_2$), 6.47 (s, 1H, $-CH=C-$), 6.62 (d, 2H, $J = 8.9$ Hz, Ar-H), 7.07 (t, 1H, $J = 2.3$ Hz, CO-N <u>H</u> NH ₂), 7.17–7.29 (m, 5H, Ph-H), 7.24 (d, 2H, $J = 8.9$ Hz, Ar = 8.9 Hz, $Ar = 10$
2e	1652–1692, 3100–3300	$\begin{array}{l} 2.21 (s, 3H, Ar-CH_3), 2.96 (s, 6H, -NCH_3), 3.12 (d, 2H, J = 2.4 Hz, -NHNH_2b), 4.33 \\ (s, 2H, -CH_2), 6.58 (s, 1H, -CH=C-), 6.69 (d, 2H, J = 8.7 Hz, Ar-H), 7.15 (t, 1H, J = 2.3 Hz, CO-NHNH_2), 7.33 (d, 2H, J = 8.7 Hz, Ar-H), 7.62 (d, 2H, J = 8.8 Hz, Ar-H), 7.62 (d, 2H, J = 8.8 Hz, Ar-H), 7.64 (d, 2H, J = 8.4 Hz, H), 7.64 (d, 2H, J = 8.4 Hz, Hz), 7.64 (d, 2Hz, Hz$
2f	1653–1697, 3110–3330	2.92 (s, 6H, $-NCH_3$), 3.08 (d, 1H, $J = 2.4$ Hz, $-NHNH_2a$), 3.15 (d, 1H, $J = 2.4$ Hz, $-NHNH_2b$), 4.34 (s, 2H, $-CH_2$), 6.63 (s, 1H, $-CH=C-$), 6.68 (d, 2H, $J = 6.7$ Hz, Ar-H), 7.15 (t, 1H, $J = 2.3$ Hz, CO-NHNH ₂), 7.33 (d, 2H, $J = 6.7$ Hz, Ar-H), 7.35–7.41 (m, 4H, $CI=4r-H$)
3a	1667–1725, 3112–3263	3.85 (s, 2H, C <u>H₂</u> CO–), 6.63 (dd, 1H, $J = 1.8$, 3.3 Hz, furan-H4), 7.04 (d, 1H, $J = 3$ Hz, furan-H3), 6.75 (s, 1H, furan-CH=C–), 7.37–7.43 (m, 5H, Ph-H), 7.64 (d, 1H, $J = 1.8$ Hz, furan-H5), 7.75 (m, 5H, Ar–H), 9.30 (s, 1H, –NH–NH–), 10.67 (s, 1H, –NH–NH–)
3b	1667–1699, 1726, 3099–3267	2.21 (s, 3H, Ar–C <u>H₃</u>), 3.88 (s, 2H, C <u>H₂</u> CO), 6.70 (s, 1H, furan-CH=C–), 6.87 (d, 2H, $J = 9$ Hz, Ar–H), 7.00 (d, 1H, $J = 3.6$ Hz, furan-H3), 7.14 (dd, 1H, $J = 1.8$, 3.6 Hz, furan-H4), 7.45 (d, 2H, $J = 9$ Hz, Ar–H), 7.69 (d, 2H, $J = 7.5$ Hz, Ar–H), 7.96 (d, $J = 1.5$ Hz, furan-H5). 8.34 (s, 1H, –NH–NH–). 11.01 (s, 1H, –NH–NH–)
3c	1660–1726, 3225–3316	3.86 (s, 2H, CH_2CO), 6.61 (s, 1H, furan-CH=C–), 6.85 (d, 2H, $J = 9$ Hz, Ar–H), 7.1 (d, 1H, $J = 3.6$ Hz, furan-H3), 7.2 (dd, 1H, $J = 1.8$, 3.6 Hz, furan-H4), 7.38 (d, 2H, $J = 8.1$ Hz, Ar–H), 7.42 (d, 2H, $J = 9$ Hz, Ar–H), 7.73 (d, 2H, $J = 7.5$ Hz, Ar–H), 7.85 (s, 1H, –NH–NH–), 7.97 (d, 1H, $J = 1.5$ Hz, furan-H5), 8.57 (s, 1H, –NH–), 10.72 (s, 1H, –NH–)
3d	1665–1726, 3230–3318	3.03 (s, 6H, –NC <u>H</u> ₃), 3.86 (s, 2H, C <u>H</u> ₂ CO–), 6.75 (s, 1H, –CH=C–), 6.80 (d, 2H, <i>J</i> = 8.9 Hz, Ar–H), 7.32–7.84 (m, 10H, Ph-H), 7.75–7.32 (d, 2H, <i>J</i> = 9 Hz, Ar–H), 9.30 (s, 1H, –NH-NH–), 11.16 (s, 1H, –NH-NH–)
3е	1661–1729, 3232–3320	2.21 (s, 3H, CH ₃), 2.98 (s, 6H, –NCH ₃), 3.56 (s, 2H, CH ₂ CO–), 6.59 (s, 1H, –CH=C–), 6.72 (d, 2H, <i>J</i> = 8.8 Hz, Ar–H), 7.15 (d, 2H, <i>J</i> = 9.05 Hz, Ar–H), 7.39–7.53 (m, 5H, Ph-H), 7.64–7.62 (d, 2H, <i>J</i> = 8.8 Hz, Ar–H), 7.77–7.75 (d, 2H, <i>J</i> = 8.8 Hz, Ar–H), 8.34 (s, 1H, –NH-NH–), 11.04 (s, 1H, –NH-NH–)
3f	1663–1727, 3224–3330	2.98 (s, 6H, $-NCH_3$), 3.56 (s, 2H, CH_2CO-), 6.81 (s, 1H, $-CH=C-$), 6.74 (d, 2H, $J = 8.8$ Hz, Ar–H), 7.15 (d, 2H, $J = 9.05$ Hz, Ar–H), 7.52 (m, 5H, Ph-H), 7.65 (d, 2H, $J = 8.8$ Hz, Ar–H), 7.78 (d, 2H, $J = 8.8$ Hz, Ar–H), 8.4 (s, 1H, $-NH-NH-$), 11.4 (s, 1H, $-NH-NH-$)
4a	1689, 1590–1620, 3217	4.34 (s, 2H, –C <u>H</u> ₂ –), 6.09 (s, 1H, furan-CH=C–), 6.66 (dd, 1H, <i>J</i> = 1.8, 3.3 Hz, furan-H4), 7.15 (d, 1H, <i>J</i> = 3.3 Hz, furan-H3), 7.07–7.64 (m, 10H, Ph-H), 7.95 (d, <i>J</i> = 1.5 Hz, furan-H5)
4b	1690, 1590–1616, 3217	2.34 (s, 3H, Ar–C <u>H₃</u>), 4.58 (s, 2H, –C <u>H₂</u>), 6.09 (s, 1H, –CH=C–), 7.07 (dd, 1H, $J = 1.8, 3.6$ Hz, furan-H4), 7.20 (d, 1H, $J = 3.3$ Hz, furan-H3), 7.38 (d, 2H, $J = 8.7$, Ar–H), 7.45 (d, 2H, $J = 8.4$ Hz, Ar–H), 7.48–7.85 (m, 5H, Ph-H), 8.20 (d, 1H, $J = 1.5$ Hz, furan-H5)
4c	1689, 1591–1619, 3219	4.44 (s, 2H, $-CH_2$), 6.71 (dd, 1H, $J = 1.8$, 3.3 Hz, furan-H4), 7.13 (s, 1H, CH=C–), 7.18 (d, 1H, $J = 3.3$ Hz, furan-H3), 7.38 (d, 2H, $J = 8.7$ Hz, Ar–H), 7.39–7.68 (m, 5H, Ph-H), 7.70 (d, 2H, $J = 8.7$ Hz, Ar–H), 7.95 (d, 1H, $J = 1.5$ Hz, furan-H5)
4d	1692, 1592–1622, 3221	2.98 (s, 6H, $-NCH_3$), 4.1 (s, 2H, CH_2CO-), 6.75 (s, 1H, $-CH=C-$), 6.80 (d, 2H, J = 8.9 Hz, Ar-H), 7.32–7.84 (m, 10H, Ph-H), 7.75–7.32 (d, 2H, $J = 9$ Hz, Ar-H)
4e	1695, 1595–1618, 3222	2.21 (s, 3H, CH ₃), 2.98 (s, 6H, $-NCH_3$), 3.56 (s, 2H, CH_2CO-), 6.59 (s, 1H, $-CH=C-$), 6.72 (d, 2H, $J = 8.8$ Hz, Ar–H), 7.15 (d, 2H, $J = 9.05$ Hz, Ar–H), 7.39–7.53 (m, 5H, Ph-H), 7.64–7.62 (d, 2H, $J = 8.8$ Hz, Ar–H), 7.77–7.75 (d, 2H, $J = 8.8$ Hz, Ar–H)
4f	1690, 1590–1624, 3230	2.99 (s, 6H, $-NCH_3$), 4.03 (s, 2H, $-CH_2CO$), 7.72 (s, 1H, CH=C-), 6.82 (d, 2H, $J = 8.4$ Hz, Ar-H), 7.32 (d, 2H, $J = 8.7$ Hz, Ar-H), 7.47 (d, 2H, $J = 8.4$ Hz, Ar-H), 7.54–7.73 (m, 5H, Ph-H), 7.92 (d, 2H, $J = 8.7$ Hz, Ar-H)

absorption maximum $\Delta\lambda_{max} = -6$ nm compared to the parent lactones **1d–f**. The parent lactones **1a–f**, hydrazides **2a–f** and/or **3a–f**, in which one lactone ring was replaced by hydrazides **2a–f** or **3a–f** and/or 1,3,5-oxadiazole **4a–f** moiety, are compared; only the introduction of a second 1,3,5-oxadiazole unit led to a further significant hypsochromic shift of **4a–c** at absorption maximum $\Delta\lambda_{max} = -130$ nm and of **4d– f** at $\Delta\lambda_{max} = -191$ nm. These results are in agreement with a theoretically calculated convergence of the frontier orbitals.

EXPERIMENTAL

¹H NMR spectra were recorded on a Varian Plus 300 (300 MHz) or Bruker XL 300 (300 MHz) instrument. Infrared spectra were taken on a Perkin-Elmer 1600 FT-IR spectrometer. Mass points were recorded on a Kratos Concept instrument. Melting points were measured on an electrothermal digital melting point apparatus and are uncorrected. The $R_{\rm f}$ values reported for TLC analyses were determined on Macherey–Nagel 0.25-mm layer fluorescent UV₂₅₄ plates with the indicated solvent system. Elemental analyses were performed by M-H-W Laboratories (Phoenix, AZ) at Murcia University, Spain, and Cairo University.

(3E)-3-Arylmethylene-5-arylfuran-2(3H)-ones 1a–f

These were prepared by following the literature method [7,8,12,16,17].

(E)-2-Aroylmethyl-3-(2-aryl)acrylohydrazides **2a–f**

These were prepared by following the literature method reported [7,8,12]. To a suspension of **1a–f** (2 mmol) in ethanol (5 ml) under nitrogen atmosphere at 25°C, hydrazine hydrate (3 mmol) was added and the mixture was stirred at 25°C for 12 h. The solvent was evaporated in vacuo, and the solid residue was recrystallized from ethanol to give **2a–f**. Analytical data are given in Tables 2 and 3.

N-(2*E*)-3-Substituted-2-(2-oxosubstitutedethyl)prop-2-enoylbenzohydrazides **3a-f**

To a suspension of **2a–f** (2 mmol) in dry benzene (15 ml) at 25°C, benzoyl chloride (2.1 mmol) was added and the mixture was heated under reflux at 75°C for 6 h. The solvent was evaporated in vacuo, and the solid residue was recrystallized from ethanol to give **3a–f**. Analytical data are given in Tables 2 and 3.

(3E)-1,4-Diaryl-3(5-phenyl)-1,3,4-oxadiazol-2yl-but-3-en-1-ones **4a-f**

A mixture of 3a-f (2 mmol) and phosphorus oxychloride (10 ml) was refluxed for 1 h. The mixture was cooled, poured onto crushed ice (20 ml), and then neutralized with 1.0 N aqueous solution of sodium hydrogen carbonate. The yellowish precipitate was collected by filtration, washed with water, and recrystallized from acetonitrile to give **4a-f**. Analytical data are given in Tables 2 and 3.

CONCLUSION

We have demonstrated the benzoylation of (E)-2-aroylmethyl-3-(2-aryl) acrylohydrazides **2a–f** in nonpolar solvent by benzoyl chloride and cyclodehydration of N-(2E)-3-substituted-2-(2-oxo-substitute-ethyl)prop-2-enoylbenzohydrazides **3a–f** by phosphorus oxychloride to give (3E)-1,4-disubstituted-3(5-phenyl-1,3,4-oxadiazol-2-yl)but-3-ene-1ones **4a–f**.

REFERENCES

- Brown, P.; Best, D. J.; Broom, N. J. P.; Cassels, R.; O'Hanlon, P. J.; Mitchell, T. J.; Osborne, N. F.; Wilson, J. M. J Med Chem 1997, 40, 2563.
- [2] Girges, M. M. Arzneim-Forsch/Drug Res 1994, 44, 490.
- [3] Singh, H.; Yadav, L. D. S.; Chaudhary, J. P. Acta Chim Hung 1985, 118, 11.
- [4] Angelini, I.; Angelini, L.; Sparaco, F. British Patent
 1, 161, 801, 1966/1969; Chem Abstr 1969, 71, 112937.
- [5] Palazzo, G.; Silvestrini, B. US Patent 3, 502, 888, 1966/1970; Chem Abstr 1970, 72, 132714.
- [6] (a) Hill, J. 1,3,4-Oxadiazoles Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W. (Eds.); Pergamon: Oxford, 1984; Vol. 6, p. 427; (b) Hill, J. 1,2,4-Oxadiazoles Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; Storr, R. C. (Eds.); Pergamon: Oxford, 1986; Vol. 4, p. 267.
- [7] Hamad, A.-S. S.; Hashem, A. I. Molecules 2000, 5, 895.
- [8] Hamad, A.-S. S.; Hashem, A. I. J Heterocycl Chem 2002, 39, 1325.
- [9] Angelini, I.; Angelini, L.; Sparaco, F. British Patent
 1, 161, 802, 1966/1969; Chem Abstr 1969, 71, 112936.
- [10] Yassin, S.; El-Aleem, A. H.; El-Aleem, A.; El-Sayed, I. E.; Hashem, A. I. Collect Czech Chem Commun 1993, 58, 1925.
- [11] (a) El-Kafrawy, A. F.; Youssef, A. S. A.; Hamad, A.-S.
 S.; Hashem, A. I. Egypt J Pharm Sci 1993, 34, 159; Chem Abstr 1993, 121, 297004; (b) Hamad; A.-S. S.;

Hashem, A. I.; El-Kafrawy, A. F.; Saad, M. M. Phosphorus, Sulfur Silicon 2000, 159, 157.

- [12] Hashem, A. I. J Prakt Chem 1977, 319, 689.
- [13] Guirguis, N. R.; Awad, B. M.; Saad, H. A. J Prakt Chem 1990, 332, 414.
- [14] Ishii, T.; Ito, T. Japanese Patent JP 69,10,781, 1969; Chem Abstr 1970, 71, 112795K.
- [15] Ishii, T.; Ito, T. Meiji Seika Kenkyu Nempo Yakuhin Bumon 1967, 43; Chem Abstr 1968, 69, 43702X.
- [16] Awad, W. I.; Hashem, A. I.; El-Badry, K. Indian J Chem 1975, 13, 113.
- [17] Awad, W. I.; Omran, S. M. A.; Hashem, A. I. J Chem UAR 1967, 10, 287.